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On Temperature Field Evolution in Planetary Atmospheric Processes

M.V. KURGANSKIY AND I.A.. PISNICHENKO

The nonlinear equation of the evolution of
temperature field perturbations in global-scale
processes is derived for the vertically averaged
baroclinic atmospheric model. In the adiabatic
approximation this equation reduces to the equa-
tion for a simple wave in the mean temperature of
vertical air columns. The influence of non-
adiabatic factors is also taken into account.

1. In a paper by one of the authors [1l] the
following equations were derived:
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which are similar in form to the "simplified
system" of equations suggested by I.A. Kibel'
[2] for the purpose of describing the dynamics of
ultralong waves (i.e., waves with zonal wave
numbers from 1 to 4) in the earth's atmosphere.
Here m = p/p,, po =~ 1000 mbar, p is the surface
pressure, f, is the average value of the Coriolis
parameter, f = (df/dy)O is the average value of
the meridional gradient of the Coriolis parameter,
T is the weighted average temperature of an air
column, R is the specific gas constant for air,
¢p is the specific heat of air at constant pres—
sure, y = R/cp, (A, B) = (8A/3x)3B/3y -
(9A/9y) B/3x, x and y are Cartesian coordinates
whose axes are directed toward the east and north,
respectively. These equations are obtained by
averaging the initial hydrothermodynamic equa~
tions over altitude, similarly to what was done in
[3, 4], and replacing the equations of motion by
the geostrophic relations (in doing this it was
taken into account that the Kibel' number for
planetary-scale motions is equal to 0(10-2), i.e.,
it is an order of magnitude smaller than for the
motions associated with synoptic processes). In
addition, the nonadiabatic heat influxes (Q) and
also (in order that the system be balanced ener-
getically) the horizontal large-scale heat dif-
fusion with the corresponding heat conductivity
coefficient y are taken into account in the model.
The study of the linearized equations of the
system (1) that was made in [1] made it possible to
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formulate two basic conclusions: 1) the systew (1)
describes two different types of waves: a) fast
waves, traveling westward with velocities of the
order of 100 m/sec and representing the limiting
case of Rossby waves with the large-scale com-
pressibility of the atmosphere taken into account,
b) relatively slow waves, moving eastward with
velocities of the order of 10 m/sec and caused in

a first approximation by the transport of entropy
perturbations by the mean zonal flow (see also

[4]; 2) due to the action of a given geographic
distribution of nonzonal heat sources and sinks the
system tries to adapt to the state, in which the
longitudinal variations of the fields of the surface
pressure m and the mean air column temperature T are
in opposite phase. In this case, near such a bal-
anced state the amplitude of the fast-wave compon-—
ent will be at least an order of magnitude less than
for the slow.

Taking into account the foregoing, as well as
the fact that in the real atmosphere the variation
of ambient conditions occurs quite smoothly, we can
conclude that the fast component of the ultralong
waves exerts no noticeable influence on the long-
period (of the order of 2-3 weeks and more) evolu-
tion of the system, and therefore it is desirable
to filter out this component from the very outset,
thereby simplifying the initial equations (1).

2. Let us write the system (1) in dimension-~
less form, choosing as the characteristic length
L = 107 m, the characteristic time L/U (U = 15
m/sec is the mean zonal wind velocity), the char-
acteristic value of m - m = 1 and, finally, the
characteristic value of T - Tavg = 250 K. We make
the deviatives of T and m with respect to x and y
dimensionless in accordance with the relations for
the zonal and meridional components of the wind

R 8(Tm) R 4(T'm)
velocity u =—— and v = — e~
fom  dy fom oz
derivatives with respect to t dimensionless as de-
rivatives with respect to x, multiplied by the
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quantity U. As a result we obtain the system
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where all the quantities that have been made di-
mensionless are denoted by a tilde, ¢ = Uf%/BRTavg
= 0(10~!) is a small parameter, equal to the ratio
of the velocities of the slow and fast wave com-
ponent, @i = uB/Uf,, Q = QR/f,U%. Strictly speak-
ing, we cannot determine precisely a priori the
order of magnitude of the terms, inside the
brackets on the right side of (3), since we know
neither the exact value of Q and uy nor the be-
havior of the second derivatives. Let us assume,
however, that these terms are of the order of
0(1); this assumption, first of all, agrees with
the general character of the behavior of the
actual fields and, secondly, as we shall see
later, it is justified by the results obtained.

We write (2) and (3) as:

m=mctedtetm,t ..., T=Ttel+eTot. .. (4)
Let us substitute (4) into (2) and (3) and equate
the coefficients for the zero and first powers
of ¢:

—=0, (5)
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Equation (5) is integrated to:
ATo= (7, t), )

with @ (¥, t) being an_undefined function for now.
Eliminating M T; + MjT, from (6) and (7) and re-
placing fi; by its expression in terms of ¢ and
To in accordance with (8), we obtain (returning
to dimensioned variables and omitting the index
on T):
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Let us show that the function ¢ is uniquely de-
fined in terms of the temperature T. To do this
let us note that ¢ = ¢ = mT, where the line above
the symbols denotes an averaging over longitude.
We assume that W = 1, i.e., the average surface
wind is zero. (This is the reason we excluded

surface friction of the atmosphere on the earth
and we assume that the system is balanced auto-
matically in terms of angular momentum.) With
(8) taken into account we rewrite this relation
in the form

e=[T+({T-T) ][1+(¢/T-1)],

from which it is easy to obtain

cp=(T_-‘)-‘=T/(1+§+o(1;;)), (10)

where T' = T - T.

Equation (9) together with the integral re-
lation (10) forms the integrodifferential equa-
tion, first order in time, that we are seeking,
which describes the evolution of the temperature
field in the slow component of the ultralong
waves. Below, it is convenient to convert from
this equation to equations for T and T'. By
averaging (9) over x and taking into account that
T is a periodic function in terms of the longi-
tude with a period Ly (L, is the length of the
circle of latitude perimeter), we obtain

o'T
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multiplying this by T', T'?, etc., and averaging
over x, we obtain equations for Eﬁz} Eﬁg; etc.
These equations, together with Eq. (11) and the
relation (10), form in principle a closed system
of an infinite number of differential equations.

3. Let us examine our problem first in the
adiabatic approximation, i.e., we set the right
sides in Egs. (11) and (12) equal to zero. It is
easy to show that in this case 3(T'D/Tn) /3t =
0 (n 2 2). (To do this it is sufficient to multi-
ply Eq. (12) by T T'™!, average over x and then
subtract from the resulting equation Eq. (11),
multiplied by T'D,)

Taking this into account, as well as the fact
that x has the form (10), we obtain from Eq. (11)
3T/3t = 0. Hence 3T'M/3t = 0 (n > 2) and 3¢ /at=0
and, consequently, Eq. (12) in the adiabatic
approximation is reduced to a very simple nonlinear
wave equation:

T’ T’
= N = 1
5 T eI —5—=0, (13)
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where 2 a1
, = 21n¢@
c(Iy=——T
) fo 9y

(1+T1°/T).

The dependence of ¢ on T' leads to a typical
nonlinear effect—a twisting of the profile of
the propagating wave and, as a consequence, to
the formation of discontinuities. Let us assume,
for example, the original T' profile is the sinu-
soid T'(x)|¢=g = A sin (27x/A) with an amplitude
A =5 K and a wavelength X = 1.5 x 10’ m (the
chosen ) value corresponds to a wave with a zonal
wave number £ = 2 at 48° latitude) and let us
assume, moreover, the average zonal wind velo-
city is U = —~§i701n¢/6y = 15 m/sec. Then

L]
clg=g = U + u sin(2mx/\), u = 0.3 m/sec. It can
be shown (see, for example, [5, chap. 2, § 8])
that for the chosen parameter values a discon-
tinuity begins with zero magnitude at the instant
of time t) = A/2wu * 93 days and reaches a maxi-
mum value of 10 K at the time tp = A/4u = 146
days. At this time the sinusoidal wave is trans-
formed into a sawtooth shape, whose amplitude
for t >> A/u then decays proportionally to At~?.
Let us note that the decay of the sawtooth wave
is not in fact contradictory to the earlier con-
clusion that the value of T'R (n > 2) must be
conserved since this conservation law is satis-
fied only until the moment of discontinuity
formation. The appearance of the discontinuity,
as is known (see [6]), however, is accompanied
by the appearance of a heat flow through it,
leading to an equalization of the temperature
perturbations on both sides of the discontinuity.
In the case of a more exact—with dissipation
taken into account—statement of the problem
this corresponds to a marked increase in the
absorption of wave energy in the region where
twisting of the wavefront occurs.

4. Let us turn to an examination of Egs.
(11) and (12) with a nonzero right side. We
shall consider heat influxes (both zonal and _
nonzonal), taken in Newtonian form: Q = (H(T*-T)
and Q' = Q - Q = S)T**-T') - HT', where the co-
efficients H and S have the dimensions of re-
ciprocal time; it is assumed that H =S =
8 x 10~7 sec~! * (16 days)~}[7], T* = T*(y,t)
is some known function, the explicit form of
which we do not need; T** = T**(x,y,t) =
1(y,t)sin(4mx/Ly), where the quantity t is chosen
from the considerations that in a real atmosphere
|s(T** - T')| s |H(T* - T)| and therefore we
assume T = 10 K.

On the right side of_Eq. (10) we ignore all
terms, starting with T'2/T? since in the sub-
stitution of @ into (11) and (12) the discarded
terms would be at least two orders of magnitude
smaller than the rest of the terms in the
equations. In addition, in (12) we ignore the
term pd2T'/dy? compared to ud?T'/ox? since the
basic dependence of the temperature field on

latitude has already been taken into account in
Eq. (11).

With the foregoing taken into account, Egs.
(11) and (12) become

aT _ e
~— —H(F-T —_
— =H(F=T)+p R (14)

o7 R AT] T'\ 0T
——T(i+ )T

9t f ay\ T ) oz
A i
-—-S(T"-—T’)—HT’+p3—12L-. (15)
s

Solving Eq. (14), we can find the function Tky,t),
which in turn enters parametrically into the non-
linear term in Eq. (15). A study of Eq. (15) in
general form is difficult and therefore we shall
examine two special cases in the following
paragraphs,

5. Let us assume S = 0, i.e., there are no
nonzonal heat influxes. We take the initial
temperature profile in the form T(x)|y=g =
A cos(2mx/X). The obvious corollary of (15) for
S = 0 is the equation

‘2 NP
at 2 dx (16)
If the second term on the right side of (16) is
much smaller than the first, then the behavior of
our system will be close to the behavior of the
system with the effective dissipative function
Hy T'2?, where H - u(2n/2)? <Hy < H + u(2n/))2.
The formation of a discontinuity in such a system
is possible for the condition A(21/A)sin(2n/X)x <
-HjT/U. The formation time of a zero-magnitude
discontinuity is determined in this case from the
formula

1 H,T
== 1n (1 - Azn/x) :

Substituting parameter values characteristic of
the real atmosphere, we obtain the result that dis-
continuity formation is possible only for A <
A27U/HIT = 2 x 10° m. The resulting scale is an
order of magnitude smaller than the scales at
which the approximation being considered operates.
Consequently, the slow mode of the ultralong waves,
propagating in the earth's atmosphere, will be
described adequately by the linearized Eq. (15).
If on the other hand, however, it is now

assumed that the first term on the right side of
(16) is much smaller than the second, then our
system is described by the Burgers equation. 1In
the case of severe dissipation (when AAU/4uTu << 1;
this quantity is of the order of 0.05 for the
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earth's atmosphere) the system behavior is well
described by the formula

2n 2n \?
I==‘4 —A(z-Ut { — (_____) }
T cos —(z—U )exp u teg,

giving eastward wave propagation with velocity
U and simultaneous decay with a decrement
u(2m/A)2 = (23 days)~! (for p = 3 x 10° m?/sec
and X\ = 1.5 x 107 m).

6. Let us examine the case S # 0, p =H =0
by solving the resulting equation by the method
of characteristics. Ignoring the term ST', which
describes the decay (the role of the latter was
investigated in the previous paragraph), we
write (15) in the form:

d 4
—T-=-—S1:sink:t, E-= U+nT’,
dt , dt (17)

where n = U/T, k = 4m/Lg.

After eliminating T' from (17), we obtain
for x the nonlinear equation of pendulum oscil-
lations d2x/dt? + nStsin kx = 0, which is solved
in elliptic functions. Then, substituting this
solution into the first of Eqs. (17), we obtain
the problem solution in the form:

T =
- 52 it (att1), -1+ 2 anlbs (@), b11417 @),
Ya Ya
(18)
=%arcsin{sn[b(}’;t+f(§)),b"]}. (19)
Here
a=knSr, b2=sin’k—2§+%l, v=k(U+nT’(8)).,

At/3

(&)= Y ;" [1—b~*sin®*g]-" do,
T'(8)=T'(x,0).

The question of the possibility of discontinuity
formation is reduced to the question of the exis-
tence of the envelope of the characteristic curves
(18) and (19) [5, chap. 2, § 1]. This envelope

must satisfy both Eq. (19) itself as well as the
equation

db 1
sin® @[1—b~?sin* @]~ dp — —

db — At/3
j dE b3

—VYat-—
dg s
k/2
‘F::::::é:ﬁ:::r =0,
¥Y4—b~*sin® kE/2
obtained by differentiating (19) with respect to
€. For the initial temperature profile, chosen
in the form-A sin (kg +¢g) (here ¢ is the phase
shift of the initial temperature profile relative
to the nonzonal drive) with amplitude A = 5 K and
for a coefficient value St = 0.8 x 10-° K/sec, a
discontinuity begins with zero magnitude at the
instant of time

= [kUVb*/4+b,—b,b, sin ¢,]

where bj = 257/TkU = 1.1 x 10-2, by = A/T =

2 x 107°. It is seen that the discontinuity can
start earlier or later than for the adiabatic
case (where t* = 1/kUb,), depending on the values
of the phase shift ¢9. The minimum t* value
occurs at ¢ = ~1/2 and is equal to -73 days.

7. Summing up, we can conclude that the
nonlinear effects, accompanying the propagation
of slow ultralong temperature waves in the earth's
atmosphere, are extremely weak and that these
waves (subjected, as we have seen, to a strong
dissipation influence) are described well within
the framework of linear theory.

A different picture is observed for the at-
mospheres of giant planets, where large-scale
processes are dynamically similar, in terms of the
values of the dimensionless criteria (including
the value of ~10-? for the Rossby number), to the
planetary motions in the earth's atmosphere and
can be described by a simplified system of equa-
tions, similar to (1). However, the nonadiabatic
factors (including dissipation) are at least an
order of magnitude weaker than on earth (thus,
the characteristic temperature relaxation time
on Jupiter amounts to hundreds of days [8]), and
the nonlinear terms in the equations can manifest
themselves in full force.
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